Chemically enhanced physical vapor deposition of tantalum nitride-based films for ultra-large-scale integrated devices

نویسندگان

  • Ning Li
  • D. N. Ruzic
  • R. A. Powell
چکیده

Physical vapor deposition (PVD) using ionized metal plasmas (ionized PVD or IPVD) is widely used to deposit conducting diffusion barriers and liners such as Ta and TaN for use in ultra-large-scale integrated (ULSI) interconnect stacks. Ionized PVD films exhibit the low resistivity, high density, and good adhesion to underlying dielectric desired for this application. On the other hand, extending PVD beyond the 45 nm technology node is problematic since IPVD may not provide sufficient step coverage to reliably coat features having high aspect ratio and sub-100 nm dimensions. Alternatively, chemical vapor deposition (CVD) and atomic layer deposition (ALD) can be used to deposit highly conformal metal films, but the electrical performance and interfacial quality may not equal that of PVD. To address future ULSI barrier/liner deposition needs, a method providing PVD-like film quality and CVD-like step coverage would be highly attractive. We have recently reported a hybrid approach to film deposition, referred to as chemically enhanced physical vapor deposition (CEPVD), in which a chemical precursor is introduced at the substrate during IPVD to provide a CVD component to the overall deposition process. The isotropic precursor flux is intended to provide film deposition on surfaces that are not impacted by the directional ions, such as the lower sidewall of a narrow via or trench. Conversely, the kinetic energy delivered to the surface by the flux of ionized metal may serve to enhance the desorption of CVD byproducts, reduce incorporation of impurities, and increase film density. In order to investigate the potential of CEPVD to deposit barrier/liner films, we have focused on the Ta-N material system since Ta/TaN is widely used as a diffusion barrier in Cu damascene processing. IPVD TaN films were deposited by reactive sputtering of a Ta target in Ar/N2 using a planar magnetron and internal rf coils to provide a secondary ionization plasma for the sputtered neutrals. CEPVD was carried out by introducing a Ta-containing, organometallic precursor [tert-butylimino tris(diethylamino) tantalum] in the vicinity of the substrate surface during IPVD. Film thickness and step coverage were determined by cross-sectional scanning electron microscopy (SEM). Film composition, chemical state, and crystal structure were characterized using Auger electron spectroscopy, x-ray photoelectron spectroscopy, and x-ray diffraction, respectively. Resistivity was measured by four-point probe. Cross-sectional SEM showed improved step coverage over IPVD TaN. CEPVD film properties were highly process dependent; however, unlike IPVD TaNx films that vary in stoichiometry but not purity, CEPVD “TaN” films contained relatively large amounts of carbon s,30%–60% d and could best be described as TaCxNy. Resistivity as low as ,370 mV cm was obtained for planar films of approximately 90 nm in thickness. © 2004 American Vacuum Society. [DOI: 10.1116/1.1808744]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated model for chemically enhanced physical vapor deposition of tantalum nitride-based films

A zero-order semiempirical model has been developed for chemically enhanced physical vapor deposition CEPVD , a recently developed hybrid approach to film deposition offering the step coverage of chemical vapor deposition while maintaining film quality similar to films produced by ionized physical vapor deposition IPVD . CEPVD is done by introducing a chemical precursor to the substrate during ...

متن کامل

Pulsed DC- Plasma Assisted Chemical Vapor Deposition of α-rich Nanostructured Tantalum Film: Synthesis and Characterization

This paper is an attempt to synthesize nanostructured tantalum films on medical grade AISI 316L stainless steel (SS) using pulsed DC plasma assisted chemical vapor deposition (PACVD). The impact of duty cycle (17-33%) and total pressure (3-10 torr) were studied using field emission scanning electron microscopy (FESEM), grazing incidence x-ray diffraction (GIXRD), nuclear reaction analysis (NRA)...

متن کامل

A Review on Titanium Nitride and Titanium Carbide Single and Multilayer Coatings Deposited by Plasma Assisted Chemical Vapor Deposition

In this paper, we reviewed researches about the titanium nitride (TiN) and titanium carbide (TiC) single and multilayer coatings. These coatings were deposited by the plasma assisted chemical vapor deposition (PACVD) technique. Plasma-based technologies are used for the processing of thin films and coatings for different applications such as automobile and aerospace parts, computer disc drives,...

متن کامل

Tantalum/ Nitrogen and n-type WO3 semiconductor/FTO structures as a cathode for the future of nano devices

In the last decades an important number of research papers published on nano chip electrode and cathode electrochromic materials. Tantalum (Ta) with so high melting point can be as a good candidate for the future of nano chip devices. However, its surface has not enough trap centers and/or occupation states, so nitrogen ions exposed on Ta surafce, may solve this problem. For this purpose, in th...

متن کامل

Material design of plasma-enhanced chemical vapour deposition SiCH films for low-k cap layers in the further scaling of ultra-large-scale integrated devices-Cu interconnects

Cap layers for Cu interconnects in ultra-large-scale integrated devices (ULSIs), with a low dielectric constant (k-value) and strong barrier properties against Cu and moisture diffusion, are required for the future further scaling of ULSIs. There is a trade-off, however, between reducing the k-value and maintaining strong barrier properties. Using quantum mechanical simulations and other theore...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004